二次函数顶点式怎么求
是二次函数y=ax^2+bx+c(a≠0)的顶点纵坐标公式 坐标(-2a/b,4ac-b2/4a) 二次函数表达式为y=ax²+bx+c(且a≠0),它的定义是一个二次多项式(或单项式)。 如果令y值等于零,则可得一个二次方程。该方程的解称为方程的根或函数的零点。 二次项系数a决定抛物线的开口方向和大小。当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。|a|越大,则抛物线的开口越小;|a|越小,则抛物线的开口越大。 一次项系数b和二次项系数a共同决定对称轴的位置。当a与b同号时(即ab>0),对称轴在y轴左侧;当a与b异号时(即ab<0),对称轴在y轴右侧。(可巧记为:左同右异) 扩展资料: y=a(x-h)²+k(a≠0,a、h、k为常数),顶点坐标为(h,k) ,对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax²的图像相同,当x=h时,y最大(小)值=k.有时题目会指出让你用配方法把一般式化成顶点式。 例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。 解:设y=a(x-1)²+2,把(3,10)代入上式,解得y=2(x-1)²+2。 注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。 一次项系数b和二次项系数a共同决定对称轴的位置。 当a>0,与b同号时(即ab>0),对称轴在y轴左; 因为对称轴在左边则对称轴小于0,也就是- b/2a<0,所以 b/2a要大于0,所以a、b要同号; 当a>0,与b异号时(即ab0, 所以b/2a要小于0,所以a、b要异号; 可简单记忆为左同右异,即当对称轴在y轴左时,a与b同号(即a>0,b>0或a0,b<0)(ab<0)。 事实上,b有其自身的几何意义:二次函数图象与y轴的交点处的该二次函数图像切线的函数解析式(一次函数)的斜率k的值。可通过对二次函数求导得到。
怎么求解二次函数的顶点式
第一种叫一般式,标准形式为y=ax^+bx+c,求值时只要知任意3点,带入即可得三元一次方程组求解析式,较简单,这里不再举例. 第二种方法叫顶点式,标准形式为y=a(x-h)^2+c,已知一个顶点和另一点时用. 顶点式求法举例:一个二次函数顶点为(3,5),且过(4,0),求其解析式. 设该函数关系式为y=a(x-h)^2+c,顶点(3,5),过点(4,0),则h=3,c=5,代入x=4,y=0即可求出a的值,于是就能求出其解析式. 注:如果你还是不明白,可以采用以下方法:因为该函数顶点(3,5),所以该函数对称轴为x=3,那么函数必过(4,0)的对称点(2,0),于是就有了3个点,即可用一般式求解. 第三个方法叫交点式,标准形式为y=a(x+m)(x+n),当题目中有函数与x轴的两个交点和另一点时用,举例如下:一个二次函数过(4,0),(-1,0)和(0,3),求其解析式. 设该函数关系式为y=a(x+m)(x+n)过(4,0),(-1,0)和(0,3),当x=4时y为0,那么(x+m)或(x+n)中必有一个为0,设它是(x+m)那么m=-4.同理,n=1.于是原函数解析式为y=a(x-4)(x+1),代入x=0,y=3即可求解. 注:交点式时可以用一般式求,但麻烦些.