什么是蒙特卡罗仿真?
蒙特卡罗模拟因摩纳哥著名的赌场而得名。它能够帮助人们从数学上表述物理、化学、工程、经济学以及环境动力学中一些非常复杂的相互作用。数学家们称这种表述为“模式”,而当一种模式足够精确时,他能产生与实际操作中对同一条件相同的反应。但蒙特卡罗模拟有一个危险的缺陷:如果必须输入一个模式中的随机数并不像设想的那样是随机数,而却构成一些微妙的非随机模式,那么整个的模拟(及其预测结果)都可能是错的。 扩展资料: 蒙特卡罗模拟在金融工程学,宏观经济学,生物医学,计算物理学(如粒子输运计算、量子热力学计算、空气动力学计算)等领域也应用广泛。 计算机技术的发展,使得蒙特卡罗模拟在最近10年得到快速的普及。现代的蒙特卡罗模拟,已经不必亲自动手做实验,而是借助计算机的高速运转能力,使得原本费时费力的实验过程,变成了快速和轻而易举的事情。它不但用于解决许多复杂的科学方面的问题,也被项目管理人员经常使用。 参考资料来源:百度百科-蒙特卡罗模拟 参考资料来源:百度百科-蒙特卡罗
pmp蒙特卡洛分析是哪个阶段的技术
应该是蒙特卡洛分析技术,是第二次世界大战时期的技术。 第二次世界大战时期,匈牙利美籍数学家约翰·冯·诺伊曼,1903.12.28—1957.02.08,现代电子计算机创始人之一,在研究中子的实验中采用了随机抽样统计的手法,因为当时随机数的想法来自掷色子及轮盘等赌博用具,所以就形象地用摩洛哥的赌城蒙特卡罗来命名这种计算方法。 扩展资料: 利用蒙特卡罗分析法可用于估算圆周率,如图,在边长为 2 的正方形内作一个半径为 1 的圆,正方形的面积等于 2×2=4,圆的面积等于 π×1×1=π,由此可得出,正方形的面积与圆形的面积的比值为 4:π。 用电脑或轮盘生成若干组均匀分布于 0-2 之间的随机数,作为某一点的坐标散布于正方形内,那么落在正方形内的点数 N 与落在圆形内的点数 K 的比值接近于正方形的面积与圆的面积的比值,即,N:K ≈ 4:π,因此,π ≈ 4K/N 。